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To each ordered set of real stationary values (with multiplicities) is shown to
correspond a real entire function .f taking on the stationary values in the given
order and with the given multiplicities along the real axis. This function has a
derivative /', whose roots are all real, and which is of the P61ya-Laguerre class; the
function .f is, apart from an arbitrary real affine transformation (conserving order)
of the independent variable, the only function satisfying all of the conditions
above. n 1993 Academic Press, Inc.

INTRODUCTION

Let f( z) be a real entire non-constant function with the property that its
derivative f'(z) has all its zeros real. Let the set of zeros x j off' be ordered
so that j < j + 1 implies x j ~ x j + I' The set of suffixes j is a subset of lL. Here
we account for a zero of multiplicity m by ascribing to it a set of m
consecutive suffixes. We order the set of stationary valuesf(xj) after the value
of j. If f(x) has limits (possibly infinite) for x --+ ± 00, these are included
among the stationary values in the natural way (but without multiplicities).
Then the question to be treated here is whether this ordered set of stationary
values determines the function f

The first thing one could observe is that we can replace f(z) by g(z) =
f(c 1Z + Cl), where C I and C l are real numbers (c 1 > 0), without changing
the ordered set of stationary values.

Next, it is easy to give examples of pairs (f, g) of functions of different
order, but with the same ordered set of stationary values. In fact, let P be
a real polynomial of the form P(z) = a + C J~ IT;:II (w - _,) dw, where a, c,
and the xj (j = 1, 2, ..., 2n - 1) are real numbers with c> O. The function
f(z) = exp(P(z)) then has the property that f' has the same 2n - I real
roots as pi, and lim lxl ~O<J f(x) = +00. But it is possible to find a real poly
nomial Q of degree 2n with the same stationary values as f, taken in the
same order (see [4]). However, Q is of order 0, and f is of order 2n.
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A natural question is whether we can achieve unique correspondence
between a function f with the properties described above and its ordered
set of stationary values, if we prescribe two points of its graph and limit its
order suitably. An affirmative answer is given in this paper; in fact, we do
have this unique correspondence if the derivative l' of f belongs to the
Polya-Laguerre class.

Formulation of the problem. Let S = {(mi , y) I j E A} be an ordered
set of ordered couples where the ordered set A is a non-empty set of
consecutive integers, and for each j E A we have m i E Nand Yi E IR, except
when j is an extreme element of A: then Yi may assume the values ±00, andm, is irrelevant. We further assume that for all j E A with {j - l,j + l} c A
we have (Yi+ 1- Yi)(Yi - )'i-- 1)( _l)m, > O. We denote by A 0 the set obtained
from A by removing its extreme elements.

A real entire function f is said to be compatible with S, if the following
conditions are satisfied,

(l) (f') -I (0) = {xi Ij E A} c R Here A is the ordered set referred to
above as part of the definition of S, and the implied ordering of (f') - I (0)
shall be that inherited from IR. An extended real number -00 or +00 is
said to belong to (f') -I (0) if A has a minimal or a maximal element,
respectively.

(2) For all j E A 0 the integer mi is the multiplicity of Xi as a zero of
1', and for all j E A the extended real number Yi equals f(x,).

We prove the

THEOREM. For all ordered sets S of the above description there exists a
real entire function f compatible with it. Its derivative has the form

f'(z) = ce _a=2 + b= n (l - (z/xr))m j e",,=ix j ,

jE A

(1)

where a ~ 0, and band c are real numbers. The function f is uniquely deter
mined by S apart from a transformation ZI--+C j z+c2 , where C J and C2

are arbitrary real numbers (c i > 0), of the independent variable. If, in the
expression (1), a> 0, then the values off( - (0) and f( +(0) are finite. If A
has a minimal (resp. maximal) element, andf( -(0) (resp.f( +(0)) is infinite,
then the canonical product is of genus O.

The following proof of the theorem is divided into several sections. First
we prove a number of lemmas, mostly concerning level lines for modulus
and argument of entire functions. Next, we prove uniqueness of the
function corresponding to an ordered set of stationary values, and finally
we give the proof of existence of such a function.



268 GUNDORPH K. KRISTIANSEN

On level lines. Let f be a non-constant function holomorphic in a
certain region Q of the complex plane C (notation: fE H(Q». Then the
associated real function IfI is defined everywhere in Q. A level line for IfI
is a connected set of points in Q on which IfI is constant. If we except from
Q the zeros off, we can also define arg f everywhere, but in general
only mod 2n. In the later applications we will be able to remove from Q a
curve from each zero of fin Q to the boundary oQ in such a way that the
resulting region Q' is simply connected; then it is possible to define arg f
everywhere in Q as a continuous function. It is still meaningful, however,
for simply connected subsets of the original region Q, to speak of increases
of arg f along a given curve, and of level lines for arg f (we shall here not
continue a level line for arg f beyond a zero z I off but may consider z) as
an endpoint for the level line). The level lines for IfI and arg f can also be
regarded as level lines for the real and imaginary parts of log f Let Zo be
a point on a level line L for If I or argf Iff'(zo) andf(zo) are non-zero,
L is a simple smooth curve in a neighbourhood of zoo If f(zo) = 0, the point
Zo is (in Q') the endpoint of level lines for argfcorresponding to values in
an open interval of length 2mn, where m is the multiplicity of the zero zo.
If f(zo) i= 0, but Zo is a zero of f' of multiplicity m? I (in the following,
a number like Zo is just called a zero of f' without explicit mention of
the condition that f(zo) i= 0), then we have an expansion f(z) =f(zo) +
(z - zo)nI+ I fl(z) with fl E H(Q) and fl(zo) i= O. Let the function j~

(holomorphic in a neighbourhood of zo) be defined such as to satisfy the
equation 1';+ I(Z) = U)(z)/f(zo). Then a level line If(z)1 = If(zo)1 with Zo
as an endpoint has close to Zo a parametric equation z = z(8), given by

((Z-ZO)f2(Z»nI+l=e iO -1 (2)

for 8 E I, where Ie IR is an interval with 8 = 0 as an endpoint. We see
that there are in fact 2(m + I) level lines for IfI with Zo as an endpoint,
depending on what branch we choose for the (m + I )st root of the right
hand side of Eq. (2), and whether I is a left or a right neighourhood of O.
If we move along a small circle with center at zo, we will meet the level line
for If I in such an order that those where arg f increases away from Zo
alternate with those where it decreases. Similarly, a parametric equation
z = z(t) for a level line arg f = arg f(zo) with Zo as an endpoint can be found
by solving the equation

(3 )

for tEl, where I is an interval of the type described above. Again there are
2(m + I) possibilities, and we have alternation with respect to whether IfI
increases or decreases along the level line. Furthermore, the two sorts of
level lines alternate, when we go round Zo'

The first two lemmas are well known.
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LEMMA 1 [7, P. III, No. 191]. Along a level line for the absolute value
IfI (resp. the argument arg f), on which neither the function f nor its
derivative I' becomes 0, arg f (resp. If I) changes monotonically.

Proof With the given assumptions the function log f is defined and
differentiable with a non-zero differential quotient in a neighbourhood of
each point on the level line. At a point of a level line for If I the real part
of log f has a zero directional derivative along the level line, and therefore
the imaginary part of log f has a non-zero directional derivative along the
curve, which is what we wanted to prove. Similarly for points of a level line
for argf

LEMMA 2 [7, P. III, No. 192]. Let L be a simple closed level line for
Ill. Assume that the interior a l of L is a subset ola.

Then, in a 1 the function f has one zero more than its derivative 1'.

Proof Let If I=R on L. Iffdid not have a zero in ai' the Maximum
Modulus Theorem used on the two functions f and Ilf would provide a
contradiction. We also see that in a I we have If I < R, so that zeros of I'
on L can be avoided by choosing a smaller value of R without changing
the number of zeros of f or I' inside the curve. Assume this done. In a
neighbourhood of each point Zo E L we can define the holomorphic
function 8(z) by the equation f(z) = Reill

(=), and 8 can be continued
indefinitely along L, where it is real and equal to a value of arg f The
increase of 8(z) when z describes L once in the positive direction equals 2n
times the number of zeros off in a J' Similarly, under this movement of z
the increase in arg(f'/f)(z) equals 2n times the difference between the
number of zeros ofl' and the number of zeros offin a l . Butl'lf= i8', and
since 8 is strictly increasing along L, we can use it as a curve parameter;
thus the increase in arg(f'IfHz) along L is equal to the decrease of
arg(dzld8), which is -2n since L is a simple closed curve described once
in the positive direction; in fact, L is homotopic to a circle, and the
homotopy can easily be designed so that the intermediate curves are smooth
and the corresponding functions arg(dzld8) vary continuously.

In the remainder of this section we consider entire functions. First, a
lemma whose proof lowe to Professor Bo Kjellberg:

LEMMA 3. Let I be an entire function of finite order p, and let z(t)
(0 ~ t < 00) be a curve, satisfying Iz(t)1 -+ CIJ for t-+ 00, along which the
function f is bounded.

Then, for (1 > p, there is a sequence of values t" -+ 00, and a positive
constant A, so that for all n we have

II'(z(tn))1 ~ A Iz(t"W- I
. (4)

If f is offinite type, we can in (4) replace (1 hy p.
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Remark. If the stipulation that / should be bounded is dropped, (4) is
still valid, if we supply its right-hand side with an extra factor 1/(z(I,,»I.
However, the proof I found is prohibitively complicated, and I have not
been able to prove the last statement of the lemma in this case.

Proof We can assume that / is non-constant. Then the function
M(r) = maxI:! <; r If(z)l increases toward infinity, but there exists a
number A, so that 10g(M(r») < Ar" for r> Ro, say. We also assume that
1/(z)1 ~ Ion the given curve. Let Z,,=Z(I,,) (n= 1, 2, ... ) be a sequence of
points on the curve, and let the sequence (r,j (n = t, 2, ... ) of positive
numbers have the property that the circles C(z", 2r,,) with center z" and
radius 2r" do not overlap. Then Kjellberg shows [3, Theorem 1 and its
proof] that the number v(r) of circles C(z", 2r,,) inside a circle C(Q, r), for
which max 1/(z)1 > 2 on the circles C(z", r,,), is bounded by the inequality

f
r v(t)

- dt < 100 log M(r)
° 1

(5)

for sufficiently larger. It follows from (5) that v(r)< l00logM(er). We
now assume that Ro is chosen larger than the lower bounds referred to
above, and also so large that any circle Izi = r with r;?; R o intersects
the given curve. Define, for mEN, R m = Roem. As usual we denote, for
x>O, by [x] the greatest integer less than or equal tox. Let om=
(1-1/e)R~-"/(l000Ae"). Then there is room for [200A(eRm)"] non
overlapping circles C(z,,, 20 m ) with centers on the given curve between
Izi =Rm- 1 and Izi =Rm. According to the estimate (5) at least Sm=
[100A(eRm)"] of these will have max 1/(z)1 ~ 2 on the circle C(z", om)
(as (J > 0, it is always possible to choose Ro so large that the integer Sm
becomes positive for every m). By Cauchy's inequality we have 1/,(z)1 ~

2/0 m at the center of such a circle, which implies the required result.

In the next lemma we specialize to real entire functions f whose
derivative /' has the form of Eq. (1). Since / is real, it often suffices
to investigate the restriction of f to the open upper halfplane U (or,
occasionally, to its closure [j = U u IR). Remember that the zeros of/' are real
and so outside U. We are particularly interested in level lines which are at
the same time asymptotic paths. An asymptotic path for an entire function
/ is a curve z(t) (0 ~ 1~ 00 ) with IZ(I)1 ~ 00 for 1 -+ 00, along which /(z(I»
approaches a finite limit a for 1 -+ 00. Here a is a so-called asymptotic
value, and there are at most 2p of these, where p is the order of/ (see, for
instance, [2, Chap. VIII, Sect. 5]). In our case (p ~ 2, thus finite) we can
avoid an asymptotic value 0 by adding a suitable fixed real constant to the
numbers Yj (j E A). We have
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LEMMA 4. Let f be a real entire function, whose derivative I' has the
form of Eq. (1). Assume that f does not have 0 as an asymptotic value. Let
z( t) = x(t) + iy( t) (0 ~ t < 00 ) be the parametric equation for a level line L in
U with Iz(t)1 -+ 00 for t -> 00, and assume that L is also an asymptotic path.

Then either x(t) -+ 00 or x(t) -+ -00 for t -+ 00, and every curve Zl(t)
(0 ~ t ~ 00) with Iz 1(t)1 -> 00 for t -+ 00, situated below L, is an asymptotic
path corresponding to the same asymptotic value (which thus equals either
f( - 00) or f( 00 )).

Proof Clearly, IfI is bounded along L, and Lemma 3 is applicable with
(J = 2. If Ix(t)1 were bounded along L, there would exist a fixed constant A
and a sequence of points (xn+ iYn) on L, so that Yn -+ 00 for n -+ 00, and
so that II'(xn+iYn)1 ~AYn for alln. But from Eq. (1) it follows that

(6)

for all real x and y. This results in a contradiction, unless a = 0, and A 0

has at most one member. If AO has exactly one member (we must then
even have m 1 = 1), and a = 0, we can integrate Eq.(l), which gives us an
expression for f of the form f(z)=k+c1(z-zo)exp(b1z). But clearly, f
cannot then be bounded along a curve with bounded abscissa. If A 0 is empty
and a = 0, f has the form f(z) = k + C 1ebz, and no curve with bounded
abscissa can be an asymptotic path.

We have shown that Ix(t)1 is unbounded along L. The proof that x(t)
approaches either +00 or -00 depends on the following development.

First we show that the image f(9") of the set 9" of points under the curve
L is bounded.

We can assume that x(t) takes on arbitrary large values. Let Z2 = X2 + iY2
be an arbitrary point in U under L, i.e., there is a parameter value 1 = 12

with X(t2) = X2 and y(t2)> J'2. Define the curve L 2 by z2(/) = X(/) +
iy( t) J'2/y( 12) (0 ~ t ~ t2), where 1 is the parameter for L (for definiteness we
can let 1 be the arc length along L). Then

(7)

Note that for O~t~t2' we clearly have Iz;(t)I~lz'(t)l, and also, because
of Eq. (6), II'(z2(t»)1 ~ II'(z(t)I.

If L is a level curve If I= R, we can, in a neighbourhood of L, define a
holomorphic function 8(z) by f(z) = ReiIJ(z). Then I'(z) = i8'(z) f(z). Along
L we have (d/dt) logf(z(t») = i(d/dt) 8(z(t)), where, according to Lemma 1,
(d/dt) 8(z(t)) is a real function of constant sign. Thus, using the
observations above, we obtain
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If(z2) -f(z2(0))1 ~r 1f'(z2(t))llz;(t)1 dt

~r 1f'(z(t))llz'(t)1 dt
o

= r If(z(t))IIO'(z(t)) z'(t)1 dt

= Rr I~ O(Z(t))1 dt

= R I f'2 ~ O(Z(t)) dtl
'0 dt

= R 10(z(t2)) - O(z(O))I, (8)

which is bounded independently of t 2, since the argument variation along
the asymptotic path L is finite. Thus fey) is bounded. A bound is
max IfI (C) + R ILlOI, where C is the segment connecting the two points
x(O) and z(O), and LlO is the difference between the initial value of 0 and
its limit for t --+ 00 along L.

Actually, we can give an exact bound for fey): Let Z3 E U be a point
outside the closure of the union of /:1' and its mirror image with respect
to IR. Consider for small positive values of e a function gAz) = fez )/(z - z 3 y.
Use the Maximum Modulus Theorem on the function g, for e --+ 0 to show
that the least upper bound for IfI in Y is max {max If I (C), R}.

For the case where L is a level line arg f= 0, we can assume that L does
not contain any zero of f except possibly as an endpoint. Then we define,
in a neighbourhood of L, the holomorphic function R(z) by f(z) = R(z) eiO.
So /,(z) = R'(z) eiO. Along L we have (d/dt) f(z(t)) = eiO(d/dt) R(z(t)),
where (d/dt) R(z(t)) is a real function without zeros on L. Hence, as in
Eq. (8),

If(z2) - f(z2(0))1 ~r1/,(z(t))llz'(t)1 dt

= r IR'(z(t)) z'(t)l dt

=r I~ R(Z(t))! dt

I1'2 d I
= 0 dt R(z(t)) dt

= IR(z(t2)) - R(z(O))1

= If(z(t2)) - f(z(O))I· (9)
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Butfis bounded on L, so that we again find thatfUn is bounded. Here
we also have sup If I (9") = sup IfI (L u C).

It follows (see [7, P. III, Nos. 339, 340]; use the reality of f) that any
curve L I situated under L and with x I (t) -+ +Cf) for t -+ Cf) is an asymptotic
path with asymptotic value f( +00), which must exist in this case. Similarly,
if x I (t) -+ -CXJ for t -+CXJ, the asymptotic value is f( - CXJ). Now, x( t) cannot
come arbitrarily close to both +00 and -00: As Iz(l)I-+ 00 for t -+ CD, to
any point Zo E [j we can find a T, so that Iz(t)l> IZol for t> T. For
x(t) = X o this implies y(t) > Yo, so that any point in [j would belong to ,CjJ,

implying that f should be bounded on I[ and thus constant, which is not
permissible. This concludes the proof of Lemma 4.

Now, for a function f satisfying the conditions of Lemma 4, we can give
more details concerning the behaviour of non-finite level lines for If I· In
fact, we have

LEMMA 5. Let f be a real entire function, whose derivative f' has the
form of Eq. (1). Let LeU be a level line for If I· Assume that L goes toward
infinity and is complete, i.e., L is a component of a set IfI= R. Then L
divides U into two parts, one of ""'hich is a component of the set If I~ R. The
closure (9") of this component in [j contains either the whole of IR or a semi
infinite real interval.

Proof We first note that the case where L is an symptotic path with its
abscissa bounded in one direction was already treated in the proof of
Lemma 4. The case where L is the union of two asymptotic paths can be
treated in the same way, and we disregard these cases in the following. In
other words, we assume that arg f has infinite variation along L.

Let L be parametrized as z(t) (I E f), where the open interval f is either
(0, CX)) or (-00, +00), depending on whether L approaches 00 in one or
in both directions (in the first case the closure [ of L in [j contains a point
Xo of IR). Since IfI is constant along L, but f' is non-zero here, IfI must,
at any point of L, be strictly decreasing in some continuously varying direc
tion normal to L, and so L is part of the boundary of a component ,CjJ c [j
of the set If I~ R. Let Zo E U be a point on L with arg f(zo) = 00 1= 0
(mod 1r). Follow the level line arg f = 00 into ,CjJ. We have seen in Lemma 4
that a corresponding asymptotic value must be real (remember that we
have arranged possible asymptotic values to be different from zero); thus,
the level line cannot be an asymptotic path and cannot end in a zero for
f' either; it must necessarily lead to a zero z I E 9" of f

If z 1 is non-real, we consider for c increasing from zero the component
Kc of the set If I~ c containing z l' For small values of c this component
contains only the one zero z1 off (to see this, we use Lemma 2 and the fact
that r has only real zeros), and the variation of arg f, when the boundary
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III = c is described once in the positive direction, is 2TC. In particular, in the
(later to be defined) cut upper halfplane U', where the function arg I is
defined and continuous, only level lines arg 1= flo corresponding to values
of eo belonging to an interval of length 2TC can end at one particular non
real zero z I of I (similarly, if =1 is a real zero of I of multiplicity m, only
level lines arg 1= eo corresponding to an interval of length mTC can end at
Z I)' Thus, the number of zeros of I must be infinite.

Considering again a particular non-real zero Z I of f, and for values of c
increasing from zero the component Kc defined above, we see that there is
a least upper bound CI to the set of values of c, for which K,. contains only
the one zero Z I off Evidently, C I < R. Since, for any c> C l, K c contains
more than one zero for f, thus at least one zero for f', it must also contain
points of R But K'l can contain at most one point of IR: the union of this
component and its mirror image in the lower halfplane is simply connected
and therefore contains a whole interval of IR if it contains two points, and
this would not be compatible with the minimality of C I •

If K" does not contain any points of IR, any K,., where C > C \, contains
a semi-infinite real interval, let us, for definiteness, say that it has + 00 as
a right endpoint. Then II( +00)1 = CI' and the interior of K'I contains an
asymptotic path, going toward +00, which is a level line for arg I starting
at Z I' The boundary III = C I of K'l consists of two asymptotic paths.

Let us again look at the case where the boundary curve 111=(', has
exactly one point X 2 in common with IR. Then!'(x2 )=0 andI(x2 ),eO. We
discussed this situation at the beginning of this section, and the essential
thing in the present context is that for each point x 2 there is only a finite
number of level lines for arg I with endpoint at X2' Exactly one of them
goes toward =I'

Let us consider the points =0 E L with arg I(zo) =i= 0 (mod TC). From each
such point we go, in the manner described, along a level line for arg I to
a zero off If this zero is non-real we go along the uniquely determined
level line for arg I on to a zero of f' or to an infinitely far point on IR (i.e.,
folIow an asymptotic path). Zeros of I situated between two such curves
from L to IR are also connected to L in this way: III increases along a level
line for arg 1= eo with eo t. 0 (mod TC) from a zero of f, and this level line
cannot be an asymptotic path or go toward IR, and it cannot cross the
other curves from L to IR, so it must go toward L.

Similarly, we can consider zeros X 2 of f' between two such curves from
L to IR. FolIowing a level line L 1 for argf, along which III decreases, from
x 2 , we must first consider the possibility that L 1 could be an asymptotic
path, for definiteness assumed going toward +00, or go back toward IR.
Then III must also decrease along IR to the right; but between two level
lines for arg I from x 2 along which III decreases there must be one along
which III increases, which gives a contradiction to the results of Lemma 4
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or the Maximum Modulus Theorem. Thus L] goes to a non-real zero off,
which is again connected to L.

If IfI increases along the given level line L 1 for argf, L 1 cannot return
to IR, since its endpoint would be a zero of 1', for which the previous
argument could be used. If L 1 is an asymptotic path, for definiteness going
toward +ec, there must be a level line L 2 (possibly IR) for arg I from x 2

below L 1, along which III decreases toward the right. Since there cannot
be any zeros for I below L 1 (as earlier said, all their level lines for arg f,
except one or two, would go toward L but cannot cross L I)' L 2 must be
an asymptotic path along which III decreases all the way, but with the
same asymptotic value as L l' an obvious contradiction. Thus L 1 must
connect the point X2 directly to a point of L.

Assume that the curve L is not the whole boundary of Y' n U in U. Then
there must exist another level line L 1 c U, which is a part of the boundary
of Y'. For definiteness we consider the case where L 1 lies to the right of L.
Then the right part L R of L cannot be an asymptotic path (Lemma 4), and
the variation of arg I along L R is infinite. Let C ICY' be an arbitrary curve,
containing no zeros of f, leading from a point of IR to a point of L. Then
the total variation of arg I along C 1 is finite (use the fact that 11'//1 is
bounded along C 1)' Thus points of L R can be connected, by level lines for
arg f, to only a finite number of zeros of I to the left of C I' Similarly,
points of L R can only be connected in this way to a finite number of zeros
of I to the right of a curve C 2' containing no zeros of f, leading from a
point of IR to a point of L I' Then I has an infinite number of non-real zeros
connected to L between the two curves C l and C2 • These zeros must,
however, connect to zeros of I' or to infinitely far points on IR, and we
again have a contradiction to the finite total variation of arg I along the
curves C 1 and C2 •

This concludes the proof of Lemma 5.

Proof 01 uniqueness. In [5], a proof of the unique correspondence
between Sand f, with the one essential restriction that the zeros of the
function I itself were supposed to be real, was given. It would be natural
to try to extend the method of proof to the present more general case.

Let f and g be two functions with derivatives of the form (I), both
compatible with S. As in [5] we investigate the function t/J, defined locally
as g - 1 of, at first defined only in a vicinity of the real axis in such a way
as to map IR onto IR. This can be done because I and g have the same
behaviour at ±ec, and because the roots of I' can be mapped bijectively
onto the roots of g' preserving order and multiplicity. In fact, let us start
at a point Xj' which is a zero ofI' with multiplicity m;; the corresponding
point W j = t/J(xj ) is a zero of g' of the same multiplicity, and we have
I(xj ) = g(w;l = Yj' In a neighbourhood c1V of x j we can put I(z) =
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Yi+(Z-Xjrlj+l/l(z), where II is entire with/l(;~):f.O. Similarly, g(w)=
Yi + (1\' - 1\)"" + I g 1(w), if w is in a suitable neighbourhood of wi' We wish
to define ¢J so that g(¢J(z))=/(z) in a neighbourhood A; of Xi' This means
that (z - xY"/+ I I,(z) = (¢>(z) - wi)m/+ I gl(¢J(z)) in A;. Choose the sign
s E { - I, I } so that s/l is positive in a real neighbourhood of xi (then also
sg I is positive in a real neighbourhood of wJ Next we choose the branches
12=(~fdli(m,+I) and g2= (sgd'i"'j+ I) so that they are positive in real
neighbourhoods of xi and wi' respectively. The equation (z - x,) 12(Z) =
(¢>(z) - wi) g2(,p(Z)) is obviously, by the Implicit Function Theorem,
satisfied by a function ,p(z) holomorphic in a neighbourhood of z = xi' The
function ¢> can be uniquely analytically continued along the real axis until
a neighbouring zero xi I or x/+' off', where the same procedure can be
used to define ¢> in a neighbourhood. This process can go on until we have
defined ¢> in a neighbourhood of the real axis. Note that ¢>' is positive
along [It

We shall show that the function ¢J can be continued analytically to the
whole plane (since the functions I and g are real, we consider only their
behaviour in 0). Because of the symmetry of the situation the same will
then be true for its inverse function 1/1, defined locally as I - log. Thus ,p is
of the form </>(Z)=('IZ+('2, where ('I and ('2 are real numbers (with ('I >0),
which is what we wanted to show.

First let us go back to the situation in [5], where not only
(/') - I (0) c IR, but also I -1(0) c IR. Here it is possible to define the function
log I(z) for z E U. This function is even univalent on U, and (log 1)( U)
is determined by S, so that ¢> can be defined simply as the biholomorphic
function (log gf 1 (log I). Under our more general assumptions we must
still ascertain that the behaviour of Ion U is essentially determined by S,
i.e., by its behaviour on IR.

It is natural to consider two cases:

(a) I is bounded on IR. Let R> sup IfI (IR). The level line L bounding
the component K of the set III ~ R containing IR is, because of the
Maximum Modulus Theorem, non-compact, and according to Lemma 4
the variation of arg I along it is infinite in both directions.

Assume that I has a zero Z I outside K. Then Z I cannot, by means of a
level line for arg f, be connected to a zero off' or to an infinitely far point
on IR, since this would contradict either Lemma I or Lemma 4. But this
contradicts the results obtained in the proof of Lemma 5. We conclude that
I has no zeros outside K.

Assume next that there is a point Zo outside K, so that 0 < I/(zo)/ ~ R.
The component Ko of the set \/1 ~ I/(zo)\ containing Zo cannot have any
point in common with K, and Ko cannot be compact, since this would
imply the existence of a zero off in Ko, which we have ruled out. Thus the
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boundary L o of Ko is of the type discussed in Lemma 5 (it is clearly not
an asymptotic path). But the closure of Ko in 0 is Ko, and we have a
contradiction to Lemma 5.

We conclude that on the set IfI > sup ifI (IR) the function logf can be
defined as a holomorphic function and is univalent. The next step is to try
to extend the definition of log f into the set ifI~ sup If I (IR). To be able
to define arg f here we remove each level line arg f = (J, leading from a
non-real zero z, off either to a zero ofI' or to an infinitely far point on IR.
For each zero z, there is exactly one such level line. In fact, every level line
arg f = (Jo with (Jo ~ 0 (mod n) must cross the level line L discussed above,
and so must also the level line argf=(Jo with (Jo=:(JI+n (mod2n), since
two level lines for arg f can only meet at a zero for either f or f'. The set
remaining when we have removed these curves from V is called V'. Clearly
V' is simply connected and contains no roots of forI', so log / can be
defined.

Next, we show that the defined function logf is univalent in V'. We
know that along L the function arg f is monotone with range IR. From each
point Zo E L we follow the level line arg f = 00 into K. If (Jo ~ 0 (mod n l,
this curve ends in a real or a non-real zero for f It is easily seen that the
set of level lines arg f = (Jo ending at a particular non-real zero Z1 of I
corresponds to an interval (J I < (Jo < (J, + 2n. Each of the level lines
argf=(J, and argI=O, +2n from points on L either ends at a zero ofI'
on IR or is an asymptotic path. Similarly, the set of level lines arg I = (Jo
ending at a particular real zero x I with multiplicity m ofI corresponds to an
open interval (J I < eo < e, + mn, while each of the two level lines arg.f= e1

and arg f = (J I + mn either ends at a zero ofI' or is an asymptotic path.
It is clear that if a level line arg / = (J2 is an asymptotic path, for definite

ness going toward +00, then of the level lines arg I = (Jo with 00 < O2 (note
that arg f decreases when we move to the right along L) those of the type
(Jo = (J, in the notation from above will be asymptotic paths, while the rest
go to non-real zeros off Thus, in this case, the set of zeros ofI' is bounded
above, and the set A has a maximal element.

Now let Zo be an arbitrary point in K II V'. Then the level line arg I =
argI(zo) will, in the case where argf(zol ~ 0 (mod n), lead to L in the
direction of increasing IfI, so that Zo is uniquely characterized by log f(zol.
But in the case where argf(zo) =:0 (modn) the level line arg/=arg/(zo)
is squeezed between the level lines for arg I through the neighbouring
points on the level line If I = If(zo)1 and so also must cross L. Here we
have used the continuity of log / on V'. So log f is univalent on V'.

It is also clear that the image Q = log f( V') is uniquely determined
(except for an additive constant, which is a multiple of 2ni) by the set S.
In fact, Q is the whole plane with horizontal cuts for each level line
arg f = (J, connecting L with a (possibly infinitely far) point on IR. Then the
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cut is placed at y = () I and stretches from x = -00 to x = log IY II, where Y I

is the corresponding stationary value. The vertical distance between two
cuts is 2n, if there is a non-real zero of I between the two level lines, and
mn, if there is a real zero of I with multiplicity m between the level lines.
It is not true, however, that the image Q determines the set S (we cannot
see the difference between a real double root an a non-real root).
Nevertheless, for the function g we can define a cut open upper halfplane
V' on which log g is defined and univalent, and we can, possibly in more
than one way, normalize the image log g( V') to equal Q. Then the function
¢J can be defined as (log g) - I 0 log f But the knowledge we have not been
able to transfer from S to Q is the relative position of the cuts we applied
to V to obtain V'. This means that to each non-real zero of I we can
associate two distinguished points on the corresponding sides of two cuts
in Q, both with abscissa equal to the logarithm of the absolute value of the
associated stationary value. The image plane of log g can be normalized so
that distinguished points in this plane and in Q correspond. So the function
¢J now has the property that it can be extended to (J by continuity so that
its image equals V, the halfplane where g is defined. Clearly, this definition
of ¢J reduces to the one we started with in a neighbourhood of R

(b) The function I is unbounded on R We have the following two
subcases:

(bl) I(x) is bounded (by B, say) when x approaches either +00 or
- 00; let us for definiteness consider the first possibility. Choose a point
XoE IR with f'(xo) < 0, with I/(xo)1 > B, and with I/(xo)1 > I/(x)1 for all
x> Xo' Then the level line L for III through Xo cannot be compact, and it
cannot be an asymptotic path. We can then use Lemma 5, which implies
that III < I/(xo)1 to the right of L, and that the number of zeros ofI here
is infinite. From each non-real zero of I there is, as we noted in the proof
of Lemma 5, a unique level line for arg I going toward IR. We remove this
level line. But we can find a sequence (x,,) of values satisfying the conditions
laid on X o above, so that XII -+ -00 for n -+ 00. Then any point of V (in
particular any non-real zero off) lies to the right of some line L", defined
as the level line for III through x". For each non-real zero we remove its
level line for arg f leading toward IR. In the resulting simply connected
region V' we can define log I as a holomorphic univalent function and
complete the proof as before (note that in this case the image Q = log I( V')
may be bounded above).

(b2) I/(x)1 is unbounded both for x -+ +00 and for x -+ -00. Starting
from an arbitrary point X oE IR we define a sequence (xn ) of real numbers
going toward - 00 and satisfying the conditions that for each n E N we
have X n < x n_ l , f'(x n) < 0, and I/(xn)1 > I/(x)1 for XII < X ~ x n_ I' The
corresponding level lines L" are now compact (otherwise we would have a
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contradiction to Lemma 5), i.e., they go back to IR. Here the analogue of
Lemma 5 is evident, and we can again remove level lines for arg f from
non-real zeros of f to IR. The rest of the proof is as before (in this case
.Q = log f( V f

) may be bounded above or below).

This concludes the proof of the uniqueness part of the theorem.

Proof of existenxce. For the proof that to each set S there exists a real
entire function with derivative of the form of Eq. (I) compatible with it, it
is natural to consider several cases:

(I) The set A, occurring in the definition of S, is finite. Only the
ordinal of A is of interest, and we can set A = {- I, 0, I, ... , n + I }. Then we
may replace Eq. (1) by

n

f'(z)=ce-az2-bz n (z-xdmk•

k~O

( 10)

We make use of the two free parameters C 1 and C2 mentioned in the
theorem to normalize a possible function f by stipulating that X o = 0 and
X n = 1.

There are two subcases, depending on the values of Y I and Yl/ + I :

(I a) Both Y _ 1 and Yn + I are infinite. This subcase was treated in [4].

( Ib) Let Yl/ + I' say, be finite. To show existence of a function f we use
the method and results of [4]. The equations to be solved are

r f' (x) dx = Y/ - Yj - I
xJ -1

(jmin ~ J~ n + I ), (II)

where Jmin is 0, if Y _I is finite (then a> 0), and 1 otherwise. Because of the
sign restrictions on the right-hand sides of Eqs. (II) we can replace both
the integrands and the right-hand sides with their absolute values. We note
that the results actually proved in [4] are based on assumptions weaker
than those mentioned above. In fact, unique solvability of Eqs. (II) for
1~ J~ n with 0( = b = 0 was proved for the case where an extra factor, a
non-negative weightfunction wn(x) holomorphic in x and possibly in a
number of parameters, was allowed in the integrands. In our case the factor
exp( -ax2

- bx) of Eq. (10) is such a weightfactor. For each pair of values
(a, b) we can then solve for the unknowns c, XI' ... , X n _ I' which will
become holomorphic functions of a and b. Let

I j = r 1f'(x)1 dx
":)-1

(jmin ~ J~ n + 1) (12 )
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(13)

and

Yi = IYi - Yi - I I (jmin ~.i ~ n + 1) (14 )

(15)

We consider separately the two possibilities:

( Ib 1) If Y_ I is infini te, we have IX = 0 and b > 0 in Eq. (10 ). We see
that the ratio III + I IIs approaches infinity when b -> 0 and approaches 0
when b -> CfJ (the latter is easier to see when numerator and denominator
are multiplied by eh

). Thus the ratio takes the value Y" + I IYs at least once.
That there is exactly one solution follows from the uniqueness proof given
earlier.

(lb2) If Y_I is finite (a>O), a more complicated argument is
necessary. For each positive value of a we see as above that there is at least
one value hI of h, for which 10 = Yo, and at least one value b 2 of b, for
which I" + I = YII + I' We shall need the fact that b I and b2 are uniquely
determined continuous functions of a. To prove this rewrite the equations
to be solved as

F(v) = Y, (16 )

where the vector Y has the coordinates Yj (0 ~ j ~ n + 1), and the jth coor
dinate of F( v) is Ii' W number the unknowns (collected in the vector v) in
the following way:

vo=a, VI =h, (3~k~n+l).

Differentiating Eq. (16) we obtain a relation between the differentials of
v and Y. Notation: The functional determinant of F is called J, the minor
obtained from J by removing row i and column k is called J;;b while the
subdeterminant obtained by removing rows i, j and columns k, I is called
J,.j;u,

To determine how, for fixed values of a, Y\, ..., Y", the parameter b l

varies as a function of Yo, we use the first n + 1 equations of the system
(16). We put dvo=dY I = ... =dY,,=O and find

J" + 1;0 dV I = Jo." + 1;0.1 dYo· (17 )
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To determine, for fixed values of a, Y j , "', Y", the dependence of b2 on
Y" + I we use the last n + I equations of the systems (16). We find

Jo;o dV 1 = (-1)" Jo,,,+ 1;0,1 dY,,+},

The determinants are easily calculated by the method of [4]:
We introduce a measure on IR with differential

(18 )

,,-I

dm(x)=e-ax2-bxlxlmOlx_llmn n IX-Xklmk'dx, (19)
k~l

For a finite-dimensional vector u with coordinates uj we define the
Vandermonde determinant

V(U)= n (Uk-Uj)'
j< k

Using Eqs. (10), (12), and (19), we find for j = 0, 1, ..., n + 1,

Fj(v)= (_,lei C(( Ix-xkl)dm(X)

=Sj lei L~ ,()~( (X-Xd) dm(x),

where r-I )"-' for )=0

Sj = i-I)" j for j= 1, ..., n

for j=n+ 1.

The partial derivatives are

where the last formula is valid for k = t, ..., n - 1.

640/75/3-4

(20)

(21 )

(22)
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where, for 1 ,,;;, j,,;;, n + 1,
n -I

aj,l=uj n (uj-Xq )

q~1

n-I

aj ,2 = - n (u j - x q )

q~1

aj,k+2= TI (uj-Xq ),

q#k

(24)

(25)

where the last equation is valid for k = 1, ..., n - 1.
To simplify det(ajd we subtract the last column from the previous n - 2

columns. This permits us to extract the factor nz:: ~ (Xk - XII _ I)' The new
n - 1 last columns are

n-2

ai, n + I = TI (U j - x q)
q~ 1

11-2

aj,k+2=TI (Uj-X q )

q~1

q#k

(l ,,;;,k,,;;, n - 2).

Next, we subtract column n from the previous n - 3 columns, which
permits us to extract the new factor TIZ: i (Xk - Xn _ 2)' This goes on, until
we get the matrix (bjk ), whose first two columns are those of (ajd, while the
n - 1 last columns are

k-I

bj,k+2=TI (uj-X q )

q~1

and the extracted factor V(x)( _l)(n-l Hn-2 l12.

A new set of column operations permits us to eliminate the numbers
x q , so that we find det(bjk ) = V(u). Thus, finally, using TI;~i (-s;) =
( -1 )(n - l)(n - 2)12, we obtain

x r<I ...rn

+

1

V(x) V(u) dm(un + d .. ·dm(ud. (26)
Xo x,.
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x ro .,. r" det(ajd dm(un)··· dm(uo), (27)
x _ J xn - J

where we again define the matrix elements ajk by Eqs. (25), but this time
l' '-0 S· nn ( )-( l)n(n-Il/2 fi dlor J- , .. " n. Ince j~O -Sj - - , we In

x ro ···r" V(x) V(u)dm(un) .. ·dm(uo)· (28)
X-I XII_1

Note that the ranges of suffixes for V(u) in Eqs. (26) and (28) are
different.

Last,

xr .. ·r" det(ajddm(un) .. ·dm(ul)' (29)
-"'0 X",_1

where we use only part of the matrix (aid, defined in Eqs. (25), viz. corre
sponding to row numbers in the range [I, n] and column numbers in
the range [2, n + 1]. With this new definition we obtain det(ajk ) =
V(x) V(u)(_l)(n-2)(n-3l/2, while n;~l (_s)=(_l)ntn+ 1 )/2, so that

(

n-I )
JO.n+J;o.l=(-lclr~1 n mk

k~l

xf', .. f" V(x)V(u)dm(un) .. ·dm(u.). (30)
Xo X,,_I

To utilize these results we note that, as mentioned earlier, keeping Y j

(1 ~ j ~ n) fixed makes c, x J' ... , X n _ 1 holomorphic functions of a and b, so
that also 10 = Io(a, b) and In + I = In + 1(a, b) become holomorphic functions
of a and b. We have just shown that, for fixed a, 10 is an increasing, In + I

a decreasing function of b. This makes b l and b2 well-defined functions
of respectively Yo and Yn + 1 for fixed a. But we are interested also in
the dependence of b l and b2 on a. We could explore this by looking at
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functional determinants, but it suffices for us to show that b I and b2 are
continuous functions of a. By definition, Io(a, bl(a, Yo)) = Yo. To show
that hI, for fixed Yo, is a lower semicontinuous function of a, we must, for
arbitrary constant b, show that the set {a I bl(a, Yo) > b} is open. But this
set equals the set {a I Yo> Io(a, b)}, which is open because 10 is continuous.
Similarly, we can show that hI is upper semicontinuous, thus continuous,
as a function of a. In the same way, h2 is shown to be continuous as a
function of a, for fixed Y" + I'

Clearly, for a close to 0, we have b I < 0 < h2 • Next we set b = - a and let
a approach infinity, which makes 111 + III.~ approach 0 and I~)Io go toward
infinity. Thus, in this limit, we have b2 < -a < b l . We conclude that
for some positive value of a we have hi = h2 , showing the existence of a
function I compatible with S.

(2) The set A has at most one extreme element. For definiteness,
we take the case where A has no maximal element. Again there are two
subcases:

(2a) A has a minimal element. Set A 0 = N. There are two possibilities:

(2a I) The value Yo is infinite. Define the sequence of polynomials
'/;, (n~ml +m2) by

q

I;,(z) = c" n (1- (zlxj,,)))mJ,

/~ I

(31 )

where X~")=XI and X~/)=X2 independently of n (XI and X 2 are given
positive numbers; for all j and n we shall have x;/) < X;'~ I ), and for all j
and n: I,,(x)")) =Yi' The degree n of f' equals 'L,!~ I mi' According to the
theorem in [4] this determines I" uniquely. We shall show that the
sequence of polynomials I" forms a normal family.

The first step is to show that the sum 'L'f= I (m)x)"l) is bounded inde
pendently of n. Assume that for some sequence of q-values (where still
n='L'f= I mil we have 'L'f=l (m)x;/))-. 00. For 2~j~q, putting

we use

In'

Vi = (t/lc"I) L~:, 1/;,(x)1 dx,
J I

(32)

(33)

which is independent of n. Substituting the expression (31) into (32),
dividing numerator and denominator in the resulting expression for V 31V2

by n'!=3 (1 - (x2Ix;1I»))m" and using the estimate
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(35)

(for x j > max {x, x 2}) in the numerator, while using the positivity of the
left-hand side of Eq. (34) in the denominator (for x < X2 < Xj), we obtain
the upper bound

U 3 ~ f~; (xix1- l)m l (xlx2 - 1)rn, exp( - (x - X2) Li~ 3 (mdxtl)) dx

U2 '" J:~ (xix, - 1)rn l (I - xlx2)m2 dx '

whose numerator tends toward 0 when q runs through the given sequence,
while the denominator is constant. This contradicts Eq. (33).

Next we must show that the coefficients C n are bounded. We have the
condition

(36)

It suffices to show that the integral (= U 2 ) has a lower bound inde
pendent of n. Here we use our result that for some finite positive number A,
independent of n,

q

I (m)xjnl) ~ A.
j~1

(37)

Choose j = J as the lowest suffix such that xjn I ~ 2x2' Then, since
(log( 1- x) )Ix is negative and decreases for x increasing from 0 to -L we
have for XI ~ X ~ X 2 that

q

L mjlog(I-(xlxtl))~ -Alx,
j~J

where A 1= (210g 2)A. Because of Eq. (37), we have 'Lf::; m j ~ 2Ax2, so
that

J-I

L mj log(l- (xlxt l )) ~ 2Ax210g(1 - (xlx2))'
j~3

We conclude that the integral in Eq. (36) has the lower bound

Ix, ( X )m l
( X )m2 + 2Ax,--1 1-- e --A,x dx,

Xl Xl x 2

a positive constant independent of n. Thus the numbers Cn are bounded,
and we have

q

If~(z)1 ~ lenl Il (l + (Izllxt>))rn)
j~1

~(sup ICnl)eAlzl, (38 )
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so that the functions I;, are uniformly bounded on every compact subset
of C. The same is true for the functions In, and they form a normal family.
Accordingly, we can extract a subsequence converging toward an entire
function, whose derivative must satisfy the inequality (38), and which then
is of order at most 1 and of finite type.

To show that for each fixed suffix j the numbers x;n) are bounded we first
show that to each suffix j there is a positive number Aj' so that for all large
n we have Lk ~j+ I (mdx-in ») > Aj . Assume that for minimal j there were a
subsequence of n-values for which LX ~J+ 1 (mk!xin ») -+ O. For these n-values
x;nl would be bounded and xj"; I tend toward infinity. But we could obtain
a lower bound for V j + I using estimates similar to those we used when
considering V 2 above: Let the numbers A and B satisfy (e + 1) sup x;n) <
A < B. Then, for sufficiently large n,

B j (X )mk

V j + I > f TI (n) - 1 dx
A k~ I X k

which could become arbitrarily large, and this is incompatible with the fact
that V 2 is bounded and Vj + I!V2 constant. But then, for an arbitrary value
of j,

If XI"1 approached infinity, the right-hand side would tend toward O.
J

We conclude that f' has infinitely many zeros Xi (1 ~ j < (0), each one
being the limit of a subsequence of (x;nl) (same j) and having the right
multiplicity. The sum Lr: I (m,!x,) converges. Since the function f' is real,
it has the form .

(39)

with real c and b. Furthermore, considering log(f'(x)!c) with x < 0 and
using Fatou's lemma or the fact the exponential factor dominates the
canonical product [1, Theorem 2.10.13J, we see that b must be non
negative. Clearly, f is compatible with the set S.

(2a2) The set A has no maximal element, but a minimal, and Yo is
finite. Now the function f' does not always have a canonical product of
genus 0, and so we use the approximations

q

f;,(z) = c"e hn= TI (l - (z!xjn l ))"', exp(mjz!x;nl),
i~ I

(40)



CRITICAL VALUES OF ENTIRE FUNCTIONS 287

where for all nand J' we have x(n) < x(nl Let x(n) = X < 0 and x(nl = X > 0
J ./+1' 1 1 2 2

be given real numbers, and for aU nand j (also j=O), j~(xt))=h
According to earlier results (case (1bl) above) these conditions definefno
To show that the functions fn form a normal family we first prove that the
sums LJ~ 1 (m)(xt l )2) are bounded. Again we define the integrals Ui
(j= 1, ... , q) by Eq. (32). Note that with Eq. (40) the expression for Uj can
be written in the form

where

L(x) = x + 10g(11 - xl),

and

is the n-independent part of the integrand.

(41 )

(42)

(43 )

In the following we shall need a few properties of the function L defined
in Eq. (42). They are collected in

LEMMA 6. The function L(x) = x + log( II - xl) is negative for x < 0 and
for 0 < x < 1. We have L(O) = 0, and L(x) -+ -00 for x -+ 1. The function
L(x)/x2 decreases from 0 to -00 when x increases from -00 to 1 (for x=o
the function takes the value -!), increases from -00 to ~for x increasing
from I to 2, and decreases again to 0 for x -+ 00. A difference L(x) - L(y),
y,'here (1-x)(l- y»O, can be written as (x- y)(/(( -1), where ( lies
between x and y.

Proof This is elementary, and I apologize for leaving it to the reader.

Going back to the proof of the theorem we again use the fact that the
ratio U3 /U 2 is independent of n (see Eq. (33)). We divide numerator and
denominator by exp(bnx 2+Lk ~ 3 mkL(x2/X~n))) and use in the numerator
the estimate (see Lemma 6)

L(x/xd - L(x2/xd = - ((x - x2)/xd (/(xk - 0

~ -(X-X2)X2/X~, (44 )

valid for X2< x < Xk (( lies between X2 and x). In the denominator (for
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0< X < X 2) the first member of Eq. (44) is positive. If bn ~ 0, we find the
upper bound

V 3 J~ F(x)exp((bn-X2L%~3 (md(x~n)2»)(x-X2))dx
-~ , (45)
V 2 J~2F(x)exp(-bn(X2-X»dx

which shows that in this case "LJ ~] (mk/(xinl )2) must be bounded.
If bn>O, consider the ratio V]/V2=IYI-Yol/IY2-Y]I. Divide the

numerator and denominator by exp(b"x] + L%~3 mkL(xl/xinl)). For X <
Xl <0<X2~Xk we use in the numerator the estimate (see Lemma 6)

L(x/xd - L(x]/xd = ((XI - x)/Xd(/(Xk - 0
~ (-r)(x] - xl/x;, (46)

where x«<x l , and -r=xlx2/(X2-xd. In the denominator (for
XI <x<O) the left-hand side of Eq. (46) is positive. We find

VI J"x F(x) exp(( -b" - r L% ~ 3 (m k/(xi"l)2»)(x I - X» dx
U~ JO ' (47)

2 x,F(x)exp(b,,(x-xd)dx

which tends toward 0 when L%~3 (mk/(x~"l)2) -+ 00. We conclude that
whatever the behaviour of bn , there must be a positive number A, so that
for all q

q

L (mk/(xinl )2) < A.
k~1

(48)

It also follows from Eqs. (45) and (47) that bn must be bounded below
and above, respectively. For alln, let Ibnl <bmax ' To show that lenl is
bounded above and below we use the equation

(49)

which shows that upper and lower bounds for V 2 suffice. A simple
upper bound for V 2 is J~;exp(bmaxlxl)F(x)dx. Now, for O~x~! the
ratio L(x)/x2 is negative and decreasing and so has the minimal value
- (4 log 2 - 2). To obtain a lower bound for V 2 we find a lower bound
for LJ~3 mjL(x/xJn l ), valid for 0 < x < x 2. Define j = J as the lowest
suffix for which xt l ~ 2x2. Then LJ~J mjL(x/xt)~ -A l x 2, where AI

A(410g 2 - 2). Also,

J~ I J~ I

L mjL(x/xt l ) ~ L(X/X2) I mj ~ 4A(X2)2 L(x/x2)·
j~3 j~3
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(50)

As we shall see, these results are sufficient to ensure that the functions I;"
and so the functions In, are uniformly bounded on compact subsets of C:

We have

and only the last sum remains to be estimated. Consider the function

for - 1~ 11 ~ 1.

Here, = Iz/xt)l, and '11 = 9t(z/xjn)).
Maximizing F means to maximize term number j in the sum of Eq. (51)

for a fixed value of Izi. We find that

For , ~ 2 we obtain the maximum F(r/2) = ,2/2. For, > 2 the maximum is
F( 1) = , + log(, - I ) < 2(r - I). Define j = J as the lowest suffix such that
Xj"l ~ Izl/2. Then

which gives the required bound.
Arguing as in connection with the inequality (38) we find that from the

functions In we can extract a subsequence, which converges toward an
entire function I compatible with S:

To show that for each fixed suffix j the numbers xt 1 are bounded we first
show that to each suffix j there is a positive number Ai' so that for all
n > L~~\ m k we have

q

L (mk/(xinl )2) > Aj .

k~j+ I

(53)

Assume that for some minimal j there is a subsequence of n-values for
which Lk~j+ I (mk/(xin1 )2) --+ O. For these n-values xjn) will be bounded
and xj"; I tend toward infinity.
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Assume also that for a subsequence bn+L{ ~ I (mdxln») ~ O. Then a
lower bound for Vj + I can easily be derived (compare with the corre
sponding estimate in subcase (2al )). Let the numbers A and B satisfy
(e + I) sup X}nl < A < B. Then, for sufficiently large n,

V j +I> ( exp Ct2 mk - KX
2 k~t+ I (md(x1n)f)) dx,

where the constant K can be chosen arbitrarily close to (but greater than)
1. Since the right-hand side of this inequality can be arbitrarily large, we
have a contradiction.

If, on the other hand, for a subsequence, bn + L{ ~ I (md\"lnl) < 0, we can
obtain a lower bound for VI'

valid for arbitrary A < x I < O. As again the right-hand side can become
arbitrarily large, we have a contradiction.

But if an inequality (53) is valid, we obtain the upper bound

f'X' ( X)nli (X )L~~2m,
V j + l < 1-- --I

x)"1 XI X 2

which clearly tends toward 0, if xj"l - 00 for n - 00.

Thus, the underlying assumption, that for some j the sequence (xjnl) is
unbounded, is false.

But then f' has infinitely many zeros, is of order at most 2 and of finite
type, with canonical product of genus at most I, and so of the form (l).
Here we can look at log(c/f'(x))+bx for x<o and conclude, by means of
Fatou's lemma or [1, Theorem 2.10.13], that a ~ O.

(2b) The final case, where we prove existence of a function f
compatible with the given set S, is the one where the ordered set A = A a has
no extreme elements. We can put A = 7L. We approximatefby functionsfp
(with pEN) of the type from Eq. (39) with fp( -00) infinite and

(54)

for all integers j > - P (i.e., the set A corresponding to fp is [ - p, 00) (l 7L).
The numbers Xo < 0 and x I > 0 are fixed, and xjPl < X}:l I for j > - p. Since
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we cannot expect the genus of the canonical product off' to be 0, we write
Eq. (39) in the form

00

f~(z)=cpebp= n «(1-(z/xl/'l))mkexp(mkz/xkPI)). (55)
k~-p+1

For each p, as noted earlier, we have bp+L'f:'~_p+I (mk/xl/'»)~O. We
keep the definition (42) and define, similarly to Eq. (43),

F(x) = exp eto mkL(x/xd) (56)

for the p-independent part of the integrand in the expressions Eq. (32) for
VI (j> - p + 1). The things to prove and the arguments with which to
prove them are very similar to those of the previous case. Some complica
tion is inevitable: In every integrand we have both positive and negative
values of XkP1. Thus we need the estimates (44) and (46) with suffixes
reduced by one (and so also -r=xOxJ!(x 1 -xo)) to evaluate terms with
k> 1, but also, to evaluate terms with k<O, the inequality (44) with X 2

replaced by Xo and valid for Xk < x < Xo < 0, while, for Xk < Xo< 0 < Xl < x,
the inequality (46) is replaced by

L(x/xd - L(xdxd = - «x- XI )/xd '/(Xk - 0

~ (-r)(x- x.l/xZ, (57)

where Xj«<X, and, as before, -r=xOxl/(XI-XO)'
We find, corresponding to Eq. (45), for bp ~ 0,

V 2/V I ~ L~ F(x) exp ((bp - XI k~2 (md(XkP1f)) (x - X.l)

xexp (( -r k~ ~+ I (m k /(xl
Pln) (X-X J )) dxl

f<t F(x) exp( -bp(x i - x)) dx, (58)
o

which shows that in this case L:~ _p+ I (m k/(xiPl )2) is bounded inde
pendently of p. For bp > 0 we use

VO/V I ~ S:~ F(x) exp (( -bp+ Xok =~+ I (mk/(xiP1)2)) (xo- X))

x exp (( -r k~2 (m k/(x iPl )2)) (xo - X)) dX/

of F(x) exp(bp(x -xo)) dx, (59)
'<0
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showing that also in this case L:~ p+1 (md(xiP)2) is bounded, i.e., there
is a positive number A, so that

I (md(xiP' )2) < A.
k= p+1

(60)

It also follows from the inequalities (58) and (59) that there is a positive
number bmax , so that

(61)

for allp. Obviously, VI ::::;J~I~F(x)exp(bmaxIxl)dx, so that ICpl has a lower
bound. Finally, using Lemma 6,

VI ~ f l /

2 F(x) exp ( -xbmax - (x
2/2) k ~ ~ +, (mkl(xiP))2))

x exp (4L G) x
2k~2 (mkl(xiPl)2») dx, (62)

which, together with Eq. (60), gives a positive lower bound for VI' and
thus a finite upper bound for Icpl.

We finally need a proof that for each suffix j the sequence (X}Pl IpEN)
is bounded. To show this we first investigate how a function fp changes
when one of its stationary values is altered.

Assume that / is a function of the type described in the theorem, and let
r be a simple zero of 1'. Assume that we want to change the stationary
value s = f(r) but keep the others, and also keep the two abscissas X o and
x \. Let us try the variation

j~(x)=f(x)+£f'(x)(x-xo)(x-x d .
x-r

(63)

We have f(r) = /(r) + £r(r)(r - xo)(r - xd; the change (of the first
order in £) of s is, in fact, rf"(r)(r-xo)(r-x,), and we can show that

af f'(x)(x - xo)(x - Xl)

as r(r)(r-xo)(r-xd(x-r)'

The variation (63) generates a transformation of / into a function whose
stationary values are the same as those of / (with the same multiplicities),
except for s, which is changed by the amount specified above. To obtain
this function we generate a sequence fIN) (N = 1, 2, ... ) of functions, where
for each N the function /(N) is obtained by applying the variation (63),
with /; replaced by lOIN, N times in succession (i.e., /(2) = fe/2.£/2, etc.). Then
fiN) approaches a limit (uniformly on compact subsets of C), which is the
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function we look for. There are a number of tedious details in arguments
of this kind: for instance, I~ has all zeros real if lei is sufficiently small; this
is easily seen to be correct if I is a polynomial, and the permissible
magnitude of lei is determined only by the behaviour oflin a neighbourhood
of r, not by its asymptotic behaviour or by the degree of the polynomial.
It is well known that a function.f' of the P6lya-Laguerre class can be
obtained as the limit of polynomials with only real zeros, and the argument
thus carries over. The variation (63) partially splits up multiple zeros of.f'.
The corresponding stationary values are altered only by o{e), which is the
reason for the ultimate convergence of the sequence lIN); also, splitting up
of r occurs if we try to use (63) on functions/with r being a multiple zero
of.f'. We can then define a transformation where the various split-up zeros
are used succesively as r-values to change a stationary value of multiplicity
greater than one.

The great advantage with these transformations is the ease with which
the associated change of value of various functionals can be predicted (this
was noted previously by Vladimir Markov; see [6]). For instance, if we
consider the variation (63), we see that, except for points in the immediate
vicinity of x = r, the graph of If. at a point x is moved horizontally by the
amount -e(x-xo)(x-xd/(x-r)+o(e) relative to the graph off This is
the information we need for I p : The transition from I p + 1 to I p can be
performed by first (using a finite number of arbitrarily small variations)
splitting up the zero x'!'p+ I l ofJ~ + I' next moving the zero of smallest absolute
value in the resulting cluster to - 00 by increasing the absolute value of the
corresponding stationary value to infinity. This is done by variations of
type Eq. (63) with e < 0 (here, as before, a process of going to the limit is
involved). This will give a horizontal movement of the graph oflp + I (out
side the interval [xo, Xl]) away from r. So the sequence (xjP11 pE N) is
decreasing and therefore convergent for all j > I. To handle the case where
j < 0 we note that from I p we can go back to a polynomial (Pp.,,' say)
with the first q - 1 correct stationary values to the right of the origin by
increasing IY"I to infinity, which will further enhance a possible divergence
xY l -+ -00 for p .... 00. But then we can use the existence of a function
(/", say) with all stationary values Yj (j < q) correct and 1- q{ 00) infinite,
from which Pp.q can be obtained by increasing IY _pi to infinity, which for
any p, increases XjPl, and we have a contradiction. We conclude that we
can extract a convergent subsequence from the sequence (fp), that the limit
function I has a derivative.f' with infinitely many negative (and positive)
zeros Xj' and that I is compatible with S. Moreover, I is of order at most
two, and.f' has the form specified in Eq. (1). Here a must be non-negative,
since otherwise 1.f'(z)1 would tend toward 0 for z -+ 00 along the imaginary
axis, which is in conflict with the known behaviour of the functions I;,.

We have concluded the proof of the theorem.
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